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ORNL Is Addressing Three Major Problems:

1. Advanced batteries are not being manufactured in the U.S.
2. Advanced batteries have insufficient energy density.

3. Advanced batteries still have high cost and insufficient long -term performance.
ACost A Safety

I Raw materials I Short circuiting

I Electrode processing I Overcharge

I Cell manufacturing I Overdischarge

I Formation cycling I Crush

I Module packaging I Thermal runaway
APerformance A Life

I Power limitations at low temperature I Calendar life

Low capacity at high discharge rates
Capacity fading
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Objective 0 Lkion vs. Na -ion Batteries: Why Sodium?

- For cost analysis (53 kWh battery pack
- Abundance in earth crust (ppm) A Li-ion Batte?i/es (L(IBs): y pack)

Lithium 20 (ranked 32m9) NMC622 vs. graphite

Sodium 27500 (ranked 6t) A Na-ion Batteries (SIBs):
Na,Fe;,Mn,,0, vs. hard carbon

Materials and Purchased ltems Cost Breakdown Materials and Purchased ltems Cost Breakdown
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Approach 0 Eutectic Synthesis Method Developed at
ORNL

A Sodium-ion Battery current TRL is 3-4. (

A Layered transition metal oxides have always

A Advantages: uniform liquid-based mixing down to
atomic level; higher crystallinity; homogeneous
morphology; fast process.

A Accomplishments: provisional patent filed; first T e
manuscript on P2-type Na,;Fe; ,Mn,,0, published. * * * %, ° * * %

been great candidates as cathodes for SIBs. ~ L -
However, the synthesis is usually energy-
Intensive, and often leads to impurities due to From metal nitrates precursors to liquid eutectic
inhomogeneous mixing, further resulting in formation in 0.5 hr.
nonideal electrochemical performance.
Eutectic Synthesis (TRL 2) T e
A Mechanism: eutectic formation + liquid mixing. i/*’* y
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Shifting Towards Cathodes with Higher Voltage

A For potential high-energy applications, SIB cathodes with higher voltage and

higher capacity are preferred.
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Eutectic Synthesis of Na ,Ni;:Mn, 0, (Target x=0.67)
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A 900 AC 2nd-step annealing resulted into P2-phase (confirmed by XRD).

A Resulted x value in the final product is roughly between 0.48 to 0.53 (due to
Na leaching during high-temperature annealing).
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P2-Na,Niy :Mn, :0, (x<0.67) Delivered ~200 mAh/g Capacity

A Slurry: 80 wt% active, 10 wt% Super C60, 10 wt% 5130PVDF.
A Half cells against Na metal vs. Full cells against pre-sodiated hard carbon.
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A Initial capacity of 196 mAh/g can be achieved for P2-Na,Ni, sMn, :O, half cell, average

voltage is ~3.25 V.
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Increasing Na Content Above 0.78 Resulted in Phase
Change (P2 A O3)

A To compensate the Na loss during annealing, x=1 synthesis attempt was
performed for Na,Ni, :Mn, :O.,. e A e = s

—— reference 03
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A 900 AC 2M-step annealing resulted into O3-phase (confirmed by XRD).

A Resulted x value in the final product is roughly between 0.78 to 0.80 (not
reaching x=1 yet but phase was already changed to O3).
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O3-Na,Ni; :Mn,; 0, (x<1) Delivered 210 mAh/g Capacity

A Half cells against Na metal vs. Full cells against pre-sodiated hard carbon.

Half cell Full cell

A Initial capacity of 230 mAh/g can be achieved for O3-Na,Ni, :Mn, O, half cell
(higher than P2-Na,Ni, :Mn, :O,), average voltage is ~3.5 V.
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